Toshiba Announces 10 TB MG06ACA HDD: Seven Platters, 237 MB/s, NAND Cache

Toshiba has announced its new enterprise-grade MG06ACA-series hard drive with a 7200 RPM spindle speed and up to 10 TB capacity. The new units have a new design as well as up to seven platters. Performance and reliability ratings of the MG06ACA-series drives are on par with other enterprise-class HDDs. In addition to the 10 TB model, Toshiba also has a 6 TB and an 8 TB model in the MG06ACA lineup.

Toshiba’s 10 TB hard drive is based on the company’s new platform featuring up to seven PMR platters along with a 7200 RPM spindle speed and the company’s persistent write cache. Toshiba’s PWC with power loss protection (PLP) stores data that is not yet written to the HDD media. Previously such feature was only found on enterprise-grade 10K and 15K hard drives to improve reliability, but Toshiba is installing it on nearline drives as well. There are several circumstances when the PWC with PLP can be useful. First, when the HDD write cache contains data not yet written to media and a power loss happens, the data is automatically moved to non-volatile memory (the drive collects energy from the spinning media). Second, when a drive with 4K sectors emulates 512B sectors, it has to perform the read-modify-write (RMW) operation to align the source write request with the physical sectors it has to modify and thus uses write cache. This slightly reduces system performance because it requires an extra spin of a disk (or more) and if a power loss occurs, a significant amount of data may get lost. Clearly, if a power loss takes place before the data is transferred to the PWC, it is gone anyway. Speaking of reliability in general, Toshiba rates the MG06ACA HDDs for 550 TB annual workload as well as for 2.5 million hours MTBF rating.

Toshiba does not say whether its 10 TB HDD uses helium, but based on power consumption (up to 10 W) and images of a disassembled drive that lacks hermetic capsule (that has a very distinctive look), the manufacturer has managed to squeeze in seven platters into a drive without using helium. Such move makes production of the drives a bit easier, but at the cost of slightly higher power consumption and a bit lower performance. Keep in mind that the persistent write cache also consumes power and therefore increased power consumption may also be a result of higher reliability.

Brief Specifications of Toshiba’s MG06ACA HDDs
Capacity 10 TB 8 TB 6 TB
P/N 4K Native MG06ACA10TA MG06ACA800A MG06ACA600A
512e MG06ACA10TE MG06ACA800E MG06ACA600E
512e SIE MG06ACA10TEY MG06ACA800EY MG06ACA600EY
RPM 7200 RPM
Interface SATA 6 Gbps
DRAM Cache 256 MB
Persistent Write Cache Yes
Helium-Filling Unknown, likely not
Data Transfer Rate (host to/from drive) 237 MB/s 230 MB/s
MTBF 2.5 million
Rated Annual Workload 550 TB
Acoustics (Seek) 34 dBA
Power Consumption Random read/write 10 W 9.1 W 8.3 W
Idle 7.3 W 6.4 W 5.6 W
Warranty 5 Years

When it comes to performance, the 10 TB MG06ACA HDD is a tad slower than competing HDDs featuring helium inside — it is speced for 237 MB/s sequential data transfer rate, which is slightly lower compared to around 250 MB/s offered by some rivals. If the drive is not helium-based, this slightly lower performance is explainable — it is harder for arms and heads to move in air environment (which has 7x higher density than helium), so “air” drives are a bit slower than helium-filled HDDs. On the other hand, the 6 TB and the 8 TB MG06ACA-series hard drives are speced for 230 MB/s sequential data transfer rate, which is a bit faster than competing HDDs of the same capacity. Unfortunately, Toshiba does not disclose which platters it uses for the lower-capacity MG06ACA drives.

At present, Toshiba offers its MG06ACA drives with the SATA interface. In addition to regular HDDs with 4K native sectors, there are versions with 512e sectors as well as flavors with Sanitize Instant Erase (SIE) feature.

Related Reading:

from AnandTech http://ift.tt/2yJSZtJ
via IFTTT

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.