Video: Laser Beam Makes Falling Droplets Explode

In mere fractions of a second, a laser turns a millimeter-sized droplet of liquid into a constellation of tiny fragments. Captured at 20,000 frames per second by a team of researchers from the University of Twente in the Netherlands, “Laser Impact On A Drop” is violently beautiful.

Here’s now the researchers describe the experiment:

The energy deposition in a liquid drop on a nanosecond time scale by impact of a laser pulse can induce various reactions, such as vaporization or plasma generation. The response of the drop can be extremely violent: The drop gets strongly deformed and propelled forward at several m/s, and subsequently breaks up or even explodes. These effects are used in a controlled manner during the generation of extreme ultraviolet (EUV) light in nanolithography machines for the fabrication of leading-edge semiconductor microchips. Detailed understanding of the fundamentals of this process is of key importance in order to advance the latest lithography machines.

That’s cool, but better semiconductors seems both important and the least exciting use of this technology possible. What we really want to know: If this is scaled up enough, can it reduce an Alderaan-sized planet into so much space dust?

[Gizmodo]

from Popular Science http://ift.tt/1FcIxZD
via IFTTT

Lockheed’s Fusion Promise: What We Know So Far

Fusion at Lockheed
Lockheed Martin announced this week a project designed to make nuclear fusion energy, long a dream of scientists and energy policymakers, a viable power source. Their prototype, pictured here, has drawn significant criticism.
Eric Schulzinger/Lockheed Martin

Researchers at Lockheed Martin made headlines this week with the announcement that they are on the fast track to building a nuclear fusion reactor. But experts responded with skepticism.

Fusion promises unlimited clean, renewable energy without the nasty byproducts of the uranium-splitting fission that drives today’s nuclear plants. The problem is figuring out how to contain it. For hydrogen atoms to smash together with enough force to fuse, they must jitter and bounce with many times the heat of the sun’s core. Tom McGuire, the Lockheed project lead, tells Popular Science their reactor will run at 200 million degrees. Matter that hot leaves the simple world of solids, liquids, and gasses to form a plasma. No solid vessel will contain that material, so fusion generators resort to suspending the roiling mass with powerful electromagnets. The best-funded fusion project in the world, called the International Thermonuclear Experimental Reactor (ITER), takes the brute force approach. It’s fusion chamber, or "tokamak," stands 100 feet tall and, at 23,000 tons, has about the same mass as a tank battalion. If it’s ever finished, it’s expected to cost tens of billions of dollars.

McGuire’s claim that his team of less than 10 people will solve the containment problem in a machine about the size of a school bus flies in the face of a long history of failures in fusion engineering. Peter Gleick pointed out that their claim of a "fusion breakthrough" isn’t exactly a first:

Just a quick reminder for those who think this "fusion breakthrough" is new. #notholdingmybreath http://ift.tt/1uaorGR

— Peter Gleick (@PeterGleick) October 15, 2014

McGuire says that history works to Lockheed’s advantage. His team’s model does have the benefit of six decades of research by other groups from which to work. The key difference in their model is a containment system that adapts on its own to fluxes in the plasma. When the roiling cloud surges against any one point in the field, the magnets push back harder like a compressed spring. That new system is also what lets their model, which they’re calling a Compact Fusion Reactor (CFR), fit into such a small space. (Daniel Clery, author of fusion book A Piece Of The Sun, notes in Science that versions of this idea have been proposed before.)

Notably, the announcement has not come with published results that other researchers could study. This may not be surprising though. Asked what the ultimate goal of the project is, McGuire says he wants to "end energy scarcity as a source of conflict." But its a good bet that making huge profits selling power to the entire world is also high on Lockheed’s list, so sharing details of the design may not be in their best interest.

Engineers working on other fusion projects have derided Lockheed’s proposed system. Business Insider reported an email from fusion scientist Tom Jarboe calling the project expensive and infeasible:

"This design has two doughnuts and a shell so it will be more than four times as bad as a tokamak," Jarboe said, adding that, "Our concept [at the University of Washington] has no coils surrounded by plasma and solves the problem."

McGuire would not comment on the cost of the Lockheed project, but noted the small size of his team.

Some fusion experts who have looked at publically available patents and images of the Lockheed design have expressed doubt that their reactor would do anything but tear itself apart. Clery writes:

One potential problem with the device that has been pointed out by scientists who have spoken with ScienceInsider is that it appears to have electromagnet coils made from superconductor inside the reaction vessel. If they were in that position in a working fusion reactor, the superconductor would be destroyed by the high-energy neutrons that are a product of fusion reactions. Other designs that use high-temperature superconductors have more than a meter of shielding to protect magnets from neutrons, although researchers at the Massachusetts Institute of Technology believe this could be reduced to as low as 77 centimeters. Even if it was possible to reduce this to 70 cm and such shielding was added to Lockheed’s current design, researchers say it would make the device 18 meters across, not the 7 meters that the company is claiming.

After containment, fusion’s major problem is maintaining a plasma density high enough that the reaction keeps going on under its own steam (as long as hydrogen isotopes derived from lithium and seawater keep pouring into the system.)

Thermonuclear plasma physicist Swadesh M. Mahajan made told Mother Jones that Lockheed’s reactor probably won’t succeed—and neither will the University of Washington or ITER:

Mahajan called Lockheed’s announcement "poppycock." He said, "Getting net energy from fusion is such a goddamn difficult undertaking," he said. "We’re all aware that there’s always a finite chance of some breakthrough which is beyond the powers of imagination." But if there was a genuine breakthrough, he said, "we’d be screaming from the treetops."

McGuire, nonetheless, is confident his group will eventually succeed—though he shies away from providing a specific timeline. "Putting a number on it right now is spurious—or, hard," he said. Their reactor, currently at in its two-meter-long fourth generation, should be ready with another several development cycles. The team will use that time to "ramp up" the design to its full potential. If it works, he says its small size will enable it to be fitted for use in everything from power plants to interplanetary spacecraft.

That’s a big if.

from Popular Science http://ift.tt/ZybnTp
via IFTTT