Feds demanded ID of YouTube users who watched certain videos

https://www.pcworld.com/article/2278729/feds-demanded-id-of-youtube-users-who-watched-certain-videos.html

We’ve all made that joke, “Searching for this in Google is gonna get me on an FBI watch list.” But according to a recent report, that might actually be true if you watched some very specific YouTube videos last year. A United States federal court ordered Google to turn over the identities of tens of thousands of users who watched certain videos in a specific timeframe.

Federal investigators obtained court-approved subpoenas for any YouTube viewers who watched tutorials on mapping via drones and augmented reality software, according to a report from Forbes. The investigators had been communicating with a suspected money launderer undercover, sent them links to the relevant videos, then demanded Google identify anyone who had watched said videos immediately following.

The subpoena included names, addresses, telephone numbers, and browsing history for Google accounts for as many as 30,000 people, tracing traffic to the relevant videos for one week in January 2023. It’s not clear whether Google complied with the demands for user information, though corporations are typically hesitant to fight subpoenas issued by courts.

According to experts from the Surveillance Technology Oversight Project and the Electronic Privacy Information Center interviewed by Forbes, the subpoenas may have violated the US Constitution’s First and Fourth Amendments. These foundational laws protect freedom of speech and restrict unreasonable search and seizure, respectively.

Such potential breaches typically aren’t acted upon unless a victim fights them in court, often resulting in lengthy legal battles that can reach the United States Supreme Court before being resolved.

via PCWorld https://www.pcworld.com

March 25, 2024 at 10:38AM

Pacemaker Powered By Light Eliminates Need For Batteries And Allows The Heart To Function More Naturally

https://www.discovermagazine.com/health/pacemaker-powered-by-light-eliminates-need-for-batteries-and-allows-the

By harnessing light, my colleagues and I designed a wireless, ultrathin pacemaker that operates like a solar panel. This design not only eliminates the need for batteries but also minimizes disruptions to the heart’s natural function by molding to its contours. Our research, recently published in the journal Nature, offers a new approach to treatments that require electrical stimulation, such as heart pacing.

Pacemakers are medical devices implanted in the body to regulate heart rhythms. They’re composed of electronic circuits with batteries and leads anchored to the heart muscle to stimulate it. However, leads can fail and damage tissue. The location of the leads can’t be changed once they’re implanted, limiting access to different heart regions. Because pacemakers use rigid, metallic electrodes, they may also damage tissue when restarting the heart after surgery or regulating arrhythmia.

Our team envisioned a leadless and more flexible pacemaker that could precisely stimulate multiple areas of the heart. So we designed a device that transforms light into bioelectricity, or heart cell-generated electrical signals. Thinner than a human hair, our pacemaker is made of an optic fiber and silicon membrane that the Tian lab and colleagues at the University of Chicago Pritzker School of Molecular Engineering have spent years developing.

Like solar panels, this pacemaker is powered by light.


Unlike conventional solar cells that are usually designed to collect as much energy as possible, we tweaked our device to generate electricity only at points where light strikes so it can precisely regulate heartbeats. We did this by using a layer of very small pores that can trap light and electrical current. Only cardiac muscles exposed to light-activated pores are stimulated.

Because our device is so small and light, it can be implanted without opening the chest. We were able to successfully implant it in the hearts of rodents and an adult pig, pacing the beats of different heart muscles. Because pig hearts are anatomically similar to human hearts, this accomplishment shows our device’s potential to translate to people.

Why It Matters

Heart disease is the leading cause of death around the world. Annually, over 2 million people undergo open-heart surgery to treat heart problems, including to implant devices that regulate heart rhythms and prevent heart attacks.

Our ultralight device gently conforms to the surface of the heart, enabling less invasive stimulation and improved pacing and synchronized contraction. To reduce postoperative trauma and recovery time, our device can be implanted with a minimally invasive technique.

What Still Isn’t Known

Currently, our technology is best first used for urgent heart conditions, including restarting the heart after surgery, heart attack and ventricular defibrillation. We continue to explore its long-term effects and durability in the human body.

The body’s internal environment is rich in fluids that are disturbed by the heart’s constant mechanical motion. This could potentially compromise the device’s functionality over time.

Pacemaker syndrome is a condition that develops from stimulating heart muscles in isolation. Michael Rosengarten BEng, MD.McGill/EKG World Encyclopedia via Wikimedia Commons, CC BY-SA

Moreover, researchers don’t fully understand how the body reacts to prolonged exposure to medical devices. The formation of scar tissue around the device after implantation can diminish its sensitivity. We are developing special surface treatments and biomaterial coatings to decrease the likelihood of rejection.

Although the breakdown of our device results in a nontoxic substance the body can safely absorb called silicic acid, evaluating how the body responds to extended implantation is essential to ensure safety and effectiveness.

What’s Next

To achieve long-term implantation and tailor the device to each patient, we are refining the rate at which it dissolves naturally in the body. We are exploring enhancements to make the device compatible as a wearable pacemaker. This involves integrating a wireless light-emitting diode, or LED, beneath the skin that is connected to the device via an optical fiber.

Our ultimate goal is to broaden the scope of what we call photoelectroceuticals beyond cardiac care. This includes neurostimulation, neuroprostheses and pain management to treat neurodegenerative conditions such as Parkinson’s disease.

The Research Brief is a short take on interesting academic work.


Pengju Li is a Ph.D. Candidate in Molecular Engineering at the University of Chicago Pritzker School of Molecular Engineering. This article is republished from The Conversation under a Creative Commons license. Read the original article.

via Discover Main Feed https://ift.tt/o2Nw8hA

March 23, 2024 at 09:54AM