Chork, The Combination Chopsticks/Fork Nobody Asked For

chorks-1.jpg

The Chork is a "three in one utensil" developed for eating Asian food. It can function as a fork, as "cheater/trainer" chopsticks with the top portion still attached, or regular chopsticks after breaking the two sticks apart. Their existence recently came to light after being tested at several Panda Express restaurants. Wow, it’s weird to think there was a time (yesterday) when I didn’t know chorks existed, and I was okay with that. Now there’s no going back. Personally, I would have called them chopstorks but that’s just me and I have a knack for naming things. "You named your cat Dingleberry." Because he’s a little turd!

Keep going for a couple more shots including one explaining its different uses in case this is way over your head.

chorks-2.jpg

chorks-3.jpg

Thanks to Thomas W, who eats all food with his hands like a normal person who doesn’t care about appearances. You can’t kick me out of here, I paid for this!

blog comments powered by Disqus

from Geekologie – Gadgets, Gizmos, and Awesome http://ift.tt/2b365pX
via IFTTT

Adblock Plus bypasses Facebook’s attempt to restrict ad blockers (update)

The war between Facebook and ad blockers is heating up. Just two days after the social network announced plans to restrict software that removes its advertising, the popular utility Adblock Plus has already unveiled a workaround. All you need to do is update your Adblock Plus filters to banish those ads once again. Facebook previously said that it didn’t pay to be whitelisted by any ad blocking company, instead it changed how its ads are recognized, and also gave users more control over what sorts of ads they see.

"This sort of back-and-forth battle between the open source ad-blocking community and circumventers has been going on since ad blocking was invented; so it’s very possible that Facebook will write some code that will render the filter useless — at any time," Adblock Plus’ Ben Williams wrote in a blog post. "If that happens, the ad-blocking community will likely find another workaround, then Facebook might circumvent again, etc."

Williams also notes that the filter hasn’t been heavily tested — Adblock Plus will adjust it based on feedback from its users. Facebook, naturally, isn’t so keen on the update and points out that it may be blocking regular posts. "We’re disappointed that ad blocking companies are punishing people on Facebook as these new attempts don’t just block ads but also posts from friends and Pages," a spokesperson for Facebook told The Verge. "This isn’t a good experience for people and we plan to address the issue."

It makes sense for Facebook to take a stronger stance against ad blockers, since its business is mostly dependent on ad revenue. But the swift response from the ad blocking community makes it clear this isn’t a battle Facebook is going to win anytime soon.

Update: TechCrunch reports that Facebook has already begun rolling out code that will disable AdBlock’s workaround.

Via: The Verge

Source: Adblock Plus

from Engadget http://ift.tt/2blg6Ug
via IFTTT

Researchers orbit a muon around an atom, confirm physics is broken

Although tiny, a proton takes up a finite amount of space, enough to fit three quarks, a host of virtual particles, and their associated gluons. The size of a proton’s radius is determined by these particles and their interactions, and so is fundamentally tied in to theories like the Standard Model and quantum chromodynamics.

We can measure the radius because the proton’s charge is spread across it, which influences the orbit of any electrons that might be circling it. Measurements with electrons produce a value that’s easily in agreement with existing theories. But a few years back, researchers put a heavier version of the electron, called a muon, in orbit around a proton. This formed an exotic, heavier version of the hydrogen atom. And here, measuring the proton’s radius produced an entirely different value—something that shouldn’t have happened.

This “proton radius puzzle” suggests there may be something fundamentally wrong with our physics models. And the researchers who discovered it have now moved on to put a muon in orbit around deuterium, a heavier isotope of hydrogen. They confirm that the problem still exists, and there’s no way of solving it with existing theories.

Muons cause problems for protons

Electrons are familiar because they’re a component of the matter we see around us. But they’re part of a larger family of particles (the charged leptons), most of which are much heavier and quite unstable. The muon is one of these, with a mass close to that of a proton’s and a half life of only 2.2 microseconds. But beyond the mass and instability, the muon should behave a lot like a run-of-the-mill electron.

A large team of researchers has been testing this by replacing electrons orbiting around a proton, creating an exotic version of the hydrogen atom. In the fractions of a second before the muon decays, the properties of these atoms can be measured. The team has focused on tracking the energy involved in shifting the muon between different orbitals around the proton, using that to infer the charge radius of the proton.

Their first attempt showed something strange: the value for the radius they got was significantly smaller than the one obtained when you measure using an electron. Remember, the muon and the electron should be equivalent, so there should be no difference. Currently, we have no physics that could explain the difference.

The finding had a statistical significance of over five sigma, which is the standard for announcing discovery in physics. Still, it might have been possible to dismiss this as some sort of experimental oddity. Or at least it was until the team gathered even more data, pushing the significance up to over seven sigma. At this point, there was no way around the fact that we have what has become known as the “proton radius puzzle.”

This may sound like a minor puzzle, but remember that the proton’s radius is tied into theories like the Standard Model, so the result suggested that there might be something wrong with our understanding of some basic physics. Theorists, naturally, responded with enthusiasm and developed some new models that added an additional fundamental force that influenced the muon’s interactions with the proton.

Meet muonic deuterium

Now, the original team is back with new measurements. Instead of using a single proton, the team has switched to a deuterium nucleus, which has a proton and a neutron.  The presence of a neutron should alter the way that electrons and muons perceive the charge of the proton. The team measured the properties of the resulting muonic deuterium to find out whether this changed the proton radius puzzle.

It’s worth taking some time to appreciate just how hard these measurements are. The muons are produced in a particle accelerator, which means they’re energetic. That’s useful, because it means they’re moving at a substantial fraction of the speed of light, which subjects them to relativistic time dilation and slows down their decay from the reference point of the stationary lab equipment. But to go into orbit around an atom, they have to be slowed down, meaning they’ll quickly decay.

The authors set it up so that the muons entered a chamber full of deuterium and are brought to a halt. As soon as a detector picked up an indication of the muons arriving, lasers started pulsing, providing energy to shift any muons from the 2S orbital up to the 2P orbital. From there, the muons would drop down to the lowest energy orbital, releasing an X-ray as they did. On average with the setup in action, the authors would detect 10 X-rays in an hour; measurements suggested three of them were background noise.

By measuring the precise wavelengths of the laser pulses that successfully shifted the muons into higher orbitals, it’s possible to determine the energy required for these shifts. From there, it’s possible to calculate the proton’s charge radius. Again, the measurement was different from what you’d get for an electron. Again, the difference was huge: 7.5 sigma, well beyond what should be possible as a statistical fluke.

The researchers devote a small section of their paper describing this to considering alternative explanations, ones that wouldn’t require modifying the Standard Model. But all of those are much worse than thinking the new results came about by chance, with probabilities against these alternatives ranging from 44 sigma up to 160 sigma.

So, the proton radius puzzle remains a puzzle. The team behind this new work point to a number of measurements that could potentially help clarify it. Some of them involve better measurements with normal electrons; others involve scattering muons off protons themselves to see if there’s an unknown force at work. The latter would tell us whether anything beyond the Standard Model will be needed to explain this puzzle.

Science, 2016. DOI: 10.1126/science.aaf2468  (About DOIs).

from Ars Technica http://ift.tt/2aNnRMV
via IFTTT

Western Digital to Use 3D ReRAM as Storage Class Memory for Special-Purpose SSDs

At the Flash Memory Summit this week, Western Digital announced that it intends to use 3D Resistive RAM (ReRAM) as storage class memory (SCM) for its future special-purpose ultra-fast SSDs. The company did not reveal any actual timelines for appropriate products, nor their specifications. However, what is important is the fact that Western Digital decided to use SanDisk’s long-discussed ReRAM along with 3D manufacturing tech to build the aforementioned special-purpose SSDs.

The amount of data that the world produces totals several zettabytes per year, which creates two challenges for the high-tech industry: one is to store the vast amounts of data more or less cost-efficiently, another is to process this data efficiently from power consumption point of view. Modern SSDs and HDDs can store plenty of information (10 to 15 TB for top-of-the-range models) and modern CPUs can process a lot of data due to increasing number of cores. However, delivering the right data to those cores poses further challenges: if the necessary data is located on an HDD/SSD, fetching them from there takes a lot of time on computer timescales (e.g., 100,000 – 10,000,000 ns) and consumes a lot of energy. Meanwhile, increasing the amount of DRAM per server is not always feasible from economic point of view.

To address the challenge, the industry came up with idea of non-volatile SCM, which would sit between DRAM and storage devices and deliver much greater performance, endurance and lower latency (e.g., 250 – 5,000 ns) than NAND while costing a lot less than DRAM in terms of per-GB prices. Historically, different companies demonstrated various types of memory, which could be used as SCM (originally, this class of devices was classified as a replacement tech for NAND flash), including conductive-bridging RAM (CBRAM), phase-change memory (PCM), magnetoresistive RAM (MRAM), resistive RAM (ReRAM) and some others. All of these technologies have their own peculiarities like performance and costs (and none of them could beat NAND in terms of per-GB cost), but SanDisk has been working for years on bringing ReRAM to the market.

Fundamentally, ReRAM (also sometimes called RRAM) works by changing the resistance across a dielectric material by electrical current (which is why 3D XPoint is considered as a proprietary implementation of ReRAM). The resistance can be measured and considered as “0” or “1”. On paper, the technology enables higher performance and endurance when compared to NAND flash, but finding the right materials and architecture for ReRAM has taken engineers many years.

Without making any significant announcements this week, Western Digital indicated that it would use some of the things it has learnt while developing its BiCS 3D NAND to produce its ReRAM chips. The company claims that its ReRAM will feature a multi-layer cross-point implementation, something it originally revealed a while ago.

Perhaps, the most important announcement regarding the 3D ReRAM by Western Digital is the claim about scale and capital efficiency of the new memory. Essentially, this could mean that the company plans to use its manufacturing capacities as well as its infrastructure (testing, packaging, etc.) in Yokkaichi, Japan, to make 3D ReRAM. Remember that SCM is at this point more expensive than NAND, hence, it makes sense to continue using the current fabs and equipment to build both types of non-volatile memory so ensure that the SCM part of the business remains profitable. IMFT does the same thing with its SCM: it uses its fab in Lehi, Utah, to produce 3D XPoint memory, but does not reveal specifics about the process technology (just like Western Digital). Of course, Western Digital could re-use some of the fundamental technologies, materials and process architecture both for ReRAM and NAND, but the company does not any particular details on the matter just now.

Quite naturally, WD’s 3D ReRAM will scale in terms of per-IC densities with the increase of the number of layers, though, we do not know how many layers will initial 3D ReRAM ICs from Western Digital incorporate. However, the company seems to be very optimistic about scaling of its SCM and believes that over time it will close the gap in terms of per-GB cost with BiCS NAND and will thus widen the gap with DRAM, which will make it more economically feasible.

Finally, the manufacturer said that its 3D ReRAM is already supported by the ecosystem, which means that the first SSDs based on the technology will probably use industry-standard interfaces (e.g. NVDIMM), which is not surprising. Perhaps, it also means that Western Digital is also already working with software developers to ensure that applications can take advantage of SCM in general, but we cannot confirm this at this time.

To sum up, Western Digital has finished development of ReRAM, which SanDisk has been discussing for several years now. The company plans to release actual products based on ReRAM in the foreseeable future (12 – 24 months from now, call it a guess) and to use the same fab and equipment to build ReRAM and NAND ICs. Western Digital’s ReRAM has a roadmap for the future. What remains to be seen is what is going to happen to the joint development of SCM announced by SanDisk and HP in October, 2016.

from AnandTech http://ift.tt/2b3i9cr
via IFTTT